Computational Law Approach to Competition Impact Assessment

Emerson S. Bañez

October 10, 2024

Outline

- Competition Impact Assessments
- Computational Law
- Law and Logic
- Steps Ontology Design
- Analysis Preview

- Givens:
 - More competition is better
 - Law can shape the competitive environment
- Therefore:
 - Review laws for competition effects (-)
 - Amend those laws to enable more competition.

- BUT: Growing Search Space
 - Statutes
 - Regulations
 - Decisions
 - Direct and indirect subject matter
 - Add up depending on the economic sector

COMPETITION ASSESSMENT CHECKLIST

a legal provision has any of the following

Limits the number or range of suppliers

This is likely to be the case if the provision:

- □ A1 Grants exclusive rights for a supplier to provide goods or services
- □ A2 Establishes a license, permit or authorisation process as a requirement of operation
- □ A3 Limits the ability of some suppliers to provide goods or services
- ☐ **A4** Significantly raises cost of entry or exit by a supplier
- □ A5 Creates a geographical barrier for companies to supply goods,

В

Limits the ability of suppliers to compete

This is likely to be the case if the provision:

- ☐ **B1** Limits sellers' ability to set prices for goods or services
- □ B2 Limits freedom of suppliers to advertise or market their goods or services
- □ B3 Sets standards for product quality that provide an advantage to some suppliers over others, or are above the level that some well-informed customers would choose
- ☐ **B4** Significantly raises costs of production for some suppliers relative to others (especially by

Bañez Computational Law October 10, 2024

Gap in Scholarship

A CONVERGENCE OF TWO GAPS

Chapter Plan

Computational Law

- "Law that works like software"
- Steps:
 - Encode the law into computational structures
 - lacktriangle For automated analysis and evaluation ightarrow Legal Determination

Why Computational Law?

- Law Reason over Power
- Universality in Computation
- Higher Towers of Consequences

Limits of Legal Reasoning

Figure: Beauvais Cathedral, Interior

Example applications

Figure:

Example applications

Figure: Autonomous Systems

Distinction from functional code

- Encode and analyze legal rules "as such"
- Easier to update separately when the law changes

Example applications

- Determine possible legal outcomes
- Making plans, giving advice
- Identifying lines of argumentation
- Drafting of legal documents

Scope of Computational Law

- Some laws more amenable to computability
- Does not mean giving up on decision-making

Some Laws More Amenable

- YES:Tax Law, Commercial Law, Contracts
- NO: Criminal Law, Constitutional Law
- ???: Case Law

Not a Substitute to Human Decision-making

- Determines "what follows" from premises
- Confirmation, prediction, generation of arguments

Figure: "All models are wrong, but some are useful - George Box"

19 / 41

British Nationality Act 1981:

"A person born in the United Kingdom after commencement shall be a British citizen if at the time of birth his father or mother is

(a) a British citizen; or..."

Extended Horn Clause:

x becomes a British citizen if x was born in the United Kingdom on date y and date y is on or after commencement and x has a parent z and z is a British citizen

Figure: Ontology Model

Figure: Deontic Logic Model

Bañez

Figure: Argument Theory Model

Problem	Encoding	Analysis
Relevance Testing:		Reasoning engines to determine relationships:
Does the law map with the industry being as- sessed? (Actors, trans- actions)	Value chain analysis →Ontologies (Ontology Web Language)	- No mapping? - Identity? - Classification? - Mereological?
Threshold Testing: Given a specific rule within a relevant law - How does this rule relate to the norm of the threshold test?	Inference rules (Prakken, Sartor) -	Argumentation Frameworks (?) Propositional networks (?)

Computational Law

Text	Deontic Logic Version	Ontology
A1 - Grants exclusive rights for a supplier to provide goods or services	If it is permitted to supply goods, AND it is obligatory that the supplier = 1 THEN (P(Supply Goods) ∧ (O(Supplier=1)) → (0 - No effect; 1 - Indirect Effect; 2 - Direct effect)	

Law and Logic

"The life of the law has not been logic; it has been experience."

Oliver Wendell Holmes, Jr.

Law and Logic

- Historical arguments
- Epistemological arguments
- Practical arguments

Threshold Test

A. Limits the number or range of suppliers
A1 - Grants exclusive rights for a supplier to provide
goods or services

Step 1 - Determine domain and scope

COMPETITION ASSESSMENT CHECKLIST

legal provision has any of the folio

Limits the number or range of suppliers

This is likely to be the case if the provision:

- □ A1 Grants exclusive rights for a supplier to provide goods or services
- □ A2 Establishes a license, permit or authorisation process as a requirement of operation
- □ A3 Limits the ability of some suppliers to provide goods or services
- ☐ **A4** Significantly raises cost of entry or exit by a supplier
- ☐ **A5** Creates a geographical barrier for companies to supply goods,

В

Limits the ability of suppliers to compete

This is likely to be the case if the provision:

- □ B1 Limits sellers' ability to set prices for goods or services
- □ B2 Limits freedom of suppliers to advertise or market their goods or services
- □ B3 Sets standards for product quality that provide an advantage to some suppliers over others, or are above the level that some well-informed customers would choose
- ☐ **B4** Significantly raises costs of production for some suppliers relative to others (especially by

29 / 41

Bañez Computational Law October 10, 2024

Step 2 - Consider existing ontologies

- Concepts and relationships in the OECD Guidelines
 LegalRuleML for concepts related to law
- Concepts and relationships in the digital payments sector - Subset of the Financial Industry Business Ontology

Step 3 - Enumerate Important Terms

Nouns	Verbs/Adjectives
Right	limit
Supplier	number
Goods	range
Services	grant
(State)	provides
(Law)	exclusive

Step 4 - Design Class Hierarchy

Step 5 - Design Internal Structure of Classes

Step 6 - Define Attribute Restrictions

Analysis Preview

Demo: Constraints and Inferences - Who is an Aunt or Uncle?

Analysis Preview

Demo: Querying Facts

Beware

- Thin, Formulaic Simplifications
- Imposed, not negotiated
- Utilitarian, commercial, fiscal
- Monocultural, geometric

Mētis

- Practical, Localized Knowledge
- Experience, Intuition, Improvisation
- "Messier"

"Messy Pathways"

Next Steps

- Document assumptions and constraints
- Ontology as data structure (Python)
- Encoding the deontic logic as ontological rules

End

Thank You!

https: