Encoding the Semantics of the OECD Threshold Tests

Emerson S. Bañez

July 18, 2024

Outline

- 1 Previously...
- 2 Law and Logic
- 3 Steps Ontology Design
- 4 Analysis Preview

Chapter Plan

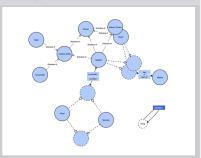
Computational Law Approaches

Problem	Encoding	Analysis
Relevance Testing:		Reasoning engines to determine relationships:
Does the law map with the industry being as- sessed? (Actors, trans- actions)	Ontologies (Ontology	No mapping?Identity?Classification?Mereological?
Threshold Testing: Given a specific rule		Argumentation Frame- works (?)
within a relevant law - How does this rule re- late to the norm of the threshold test?	Inference rules (Prakken, Sartor) -	Propositional networks

Computational Law

A1 - Grants exclusive rights for a supplier to provide goods or services

Text


Deontic Logic Version

If it is permitted to supply goods, AND it is obligatory that the supplier = 1 THEN

(P(Supply Goods) ^ $(O(Supplier=1)) \rightarrow$

(0 - No effect; 1 - Indirect Effect; 2 - Direct effect)

Ontology

"The life of the law has not been logic; it has been experience." Oliver Wendell Holmes, Jr.

- Historical arguments
- Epistemological arguments
- Practical arguments

A. Limits the number or range of suppliers A1 - Grants exclusive rights for a supplier to provide goods or services

Step 1 - Determine domain and scope

COMPETITION ASSESSMENT CHECKLIST

Limits the number or range of suppliers

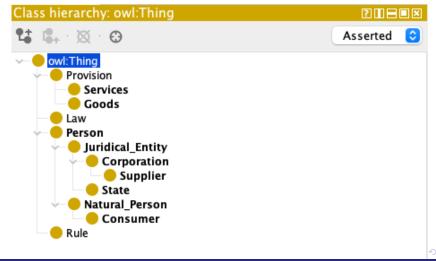
This is likely to be the case if the provision:

- ☐ **A1** Grants exclusive rights for a supplier to provide goods or services
- ☐ A2 Establishes a license, permit or authorisation process as a requirement of operation
- □ A3 Limits the ability of some suppliers to provide goods or services

Limits the ability of suppliers to compete

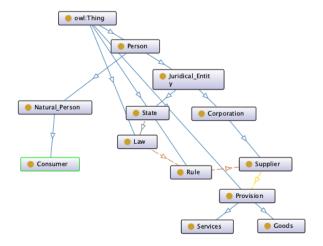
This is likely to be the case if the provision:

- □ **B1** Limits sellers' ability to set prices for goods or services
- □ **B2** Limits freedom of suppliers to advertise or market their goods or services
- □ B3 Sets standards for product quality that provide an advantage to some suppliers over others, or are above the



- Concepts and relationships in the OECD Guidelines - LegalRuleML for concepts related to law
- Concepts and relationships in the digital payments sector - Subset of the Financial Industry Business Ontology

Step 3 - Enumerate Important Terms


Nouns	Verbs/Adjectives
Right	limit
Supplier	number
Goods	range
Services	grant
(State)	provides
(Law)	exclusive

Step 5 - Design Internal Structure of Classes

	Description: provides	2080×
	Equivalent To +	
	SubProperty Of +	
	Inverse Of +	
Object property hierarchy: provides □□□□□ □□□□□□□□□□□□□□□□□□□□□□□□□□□□	Domains (intersection) +	7@80
owl:topObjectProperty deontic_state forbidden	Ranges (intersection) +	?@⊗⊙
 bligated permitted enacts has rule 	Disjoint With (+)	
provides	SuperProperty Of (Chain) +	

Step 6 - Define Attribute Restrictions

Analysis Preview

Demo: Constraints and Inferences - Who is an Aunt or Uncle?

Analysis Preview

Demo: Querying Facts

Next Steps

- Document assumptions and constraints
- Ontology as data structure (Python)
- Encoding the deontic logic

End

Thank you!

emersonbanez.github.io/dissertation_ public

