Encoding the Normative Logic of the OECD Threshold Tests

Emerson S. Bañez

January 24, 2025

Outline

2 Logical Encoding of Norms

Conclusion and What's Next

- Legal and normative reasoning for digital systems
- Connectionist vs. symbolic approaches
- Goal: KB for Automated Legal Reasoning

Chapter Plan

・ロト ・四ト ・ヨト ・ヨト

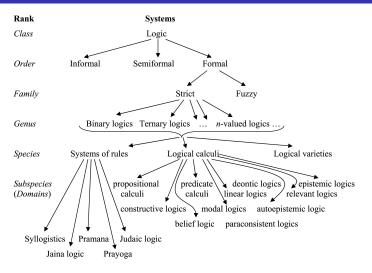
3

Computational Law Approaches

Problem	Encoding	Analysis
Relevance Testing:		Reasoning engines to determine relationships:
Does the law map with the industry being as- sessed? (Actors, trans- actions)	(Intologies (Untology	- No mapping? - Identity? - Classification? - Mereological?
Threshold Testing: Given a specific rule within a relevant law - How does this rule re- late to the norm of the threshold test?	Inference rules (Prakken, Sartor) -	Argumentation Frame- works (?) Propositional networks (?)

Image: Image:

문 문 문


Model for the KB

	Symbolic Encoding	Computational Encoding
Legal Text	Human Language: "A Supplier cannot provide goods or services exclusively, unless it belongs to an economic sector that allows for a natural monopoly"	
Terminology	Description Logic: Supplier ⊓ ExclusiveProvider ⊑ ∃ belongsTo.NaturalMonopolySector	Object Web Language
Norms	Defeasible Deontic Logic: ∞(Empty Set) ⇒ [F] ExclusiveSupplier, (Sector AllowsNaturalMonopoly(Acme Inc.)) ⇒ [P] Exclusive Supplier	LegalRuleML

Figure: Layered Encodings (Robaldo, 2020)

< 注 → 注

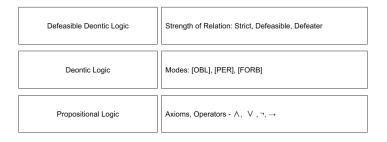

Forms of Logic

Figure: Evolution of Logics (Burgin, 2022)

Computational Law

∃ →

(日)

Ξ.

If $X \Rightarrow [D_1]$ formula₁,..., formula_n $[D_n]$

Where:

- X Set of factual or deontic statements
- [*D_i*] Deontic value (OBL, PER, FORB)
- $\bullet\,\Rightarrow$ Denotes implication is defeasible

Encoding A1 of the OECD Guidelines

Rule 1

$ps1:Person(x) \Rightarrow [FORB]ExclSuppl$

Rule 2

$ps2:SectAllowsNatMono(x) \Rightarrow [PERM]ExclSuppl$

Defeasibility

Bañez

э

Logic, Computation and Truth

- Logic has little to do with Truth
- We determine which premises are True
- We determine how to interpret/act on evaluations
- Logic is a commitment to process

- Encode normative component of the OECD guidelines
- Linking with the ontology
- Test analysis

emersonbanez.github.io/dissertation_public